Scoring

Shigeyuki Tajima

Duke/NCCU and TUNL

Slides courtesy of SLAC GEANT4 Team
Special thanks to Makoto Asai

GEANT4 Tutorial @ TUNL Jun 22-24,2009

Contents

Retrieving information from Geant4

Basic structure of detector sensitivity
Sensitive detector vs. primitive scorer
Primitive scorers

Filter class

Accumulating scores for a run

Slide from SLAC Geant4 tutorial course in ‘06

Retrievingl information firom
Geant4

Slide from SLAC Geant4 tutorial course in ‘06

Extract useful’ information

> Given geometry, physics and primary. track generation, Geant4 does proper
physics simulation “silently”.

> Youl have to add al bit of code to extract information useful to you.
» There are two ways:
» Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)
» You have full access to almost all' information

» Straight-forward, but do-it-yourself

» Use Geant4 scoring functionality.
» Assign G4VSensitiveDetector to a volume

» Hit is a snmapshot off the physical interaction of a track or an
accumulation of interactions of tracks in the sensitive (or interested) part
of your detector.

» Hits collection is automatically: stored int G4Event object, and
automatically’ accumulated iff user-defined Run object is used.

» Use user hooks (G4UserEventAction, G4UserRunAction) to get event /
run summary

Slide from SLAC Geant4 tutorial course in ‘06

Basic structure ofi
detector sensitivity.

Slide from SLAC Geant4 tutorial course in ‘06

Sensitive Detector

® A G4VSensitiveDetector object can be assigned to
G4LogicalVolume

® |n case a step takes place in a logical volume that has a
G4VSensitiveDetector object, this G4VSensitiveDetector is
invoked with the current G4Step object.

® you can implement your own sensitive detector classes, or use
scorer classes provided by Geant4.

GEANT4 Tutorial @ TUNL Jun 22-24,2009 This slide based on a SLAC Geant4 tutorial slide

Defining| ai sensitive detector

> Basic strategy.
G4LogicalVolume* mylogCalor =

G4VSensetiveDetector* pSensetivePart =
new MyDetector (“/mydet”) ;
G4SDManager* SDMan = GASDManager: :GetSDMpointer () ;
SDMan->AddNewDetector (pSensitivePart) ;
myl.og€Calor->SetSensitivebDetector (pSensetivePart) ;
» Each detector object must have a unique name.
Some logical volumes cani share one detector object.

More than one detector objects can be made from one detector class with
different detector name.

One logicall velume cannoet have more than one detector objects. But, one
detector object can generate more than one kinds of hits.

» e.d. a double-sided silicon micro-strip: detector can generate hits for
each side separately.

Slide from SLAC Geant4 tutorial course in ‘06

Hits collection, hitsimap

G4\V/HitsCollection is the common abstract base class ofi both G4 THitsCollection
and G4 T HitsMap.

G4THitsCollection is a template vector class to store pointers off objects of one
concrete hit class type.

» A hit class (deliverable off G4VHit abstract base class) should have its own
identifier (e.g. cell ID).

» In other words, G4THitsCollection requires you to implement your hit class.

G4THitsMap is a template map) class so that it stores keys (typically cell ID, i.e.
copy hnumber of the volume) with pointers of objects of one type.

» Objects may not be those of hit class.

» All off currently’ provided scorer classes use G4 THitsMap with simple
double.

» Since G4THitsMap is a template, it can be used by your sensitive detector
class to store hits.

Slide from SLAC Geant4 tutorial course in ‘06

Class diagram

Concrete class provided by 64

Abstract base class provided by 64
Template class provided by 64

User's class

G4LogicalVolume G4Event $\
has\ :
0.1

G4HCofThisEvent

G4VSensitiveDetector

kind of T

G4MultiFunctionalDetector

\.

W

G4VHitsCollection

— G4THitsCollection

userSensitiveDetector \n

G4VPrimitiveSensitivity

G4VHit
G4THitsMap V\\n f

userHitsCollection

or userHitsMap

N

hits map

userHit

Slide from SLAC Geant4 tutorial course in ‘06

Sensitive detector
V/S.
PriMItive scorer

Slide from SLAC Geant4 tutorial course in ‘06

GAMultiEFunctionalDetector

» GAMultiFunctionalDetector is a concrete class derived from
G4\VSensitiveDetector. It should be set to a logicall volume asi a kind of sensitive
detector.

It takes arbitrary number of G4VPrimitiveSensitivity classes. By registering

G4VPrimitiveSensitivity classes, you can define the scoring detector of your
need.

» Each G4VPrimitiveSensitivity: class accumulates one physics guantity for each
physical velume.

» For example, G4PSDoseScorer (a concrete class of GA4VPrimitiveSensitivity.
provided by Geant4) accumulates dose, for each cell.

By using G4MultiFunctionalDetector and provided concrete
G4\VPrimitiveSensitivity: classes, you are freed from implementing sensitive
detector and hit classes.

Slide from SLAC Geant4 tutorial course in ‘06

Sensitive detector vs. prmitive; scorer

Sensitive detector Primitive scorer

» You have to implement your own * Many scorers are provided by
detector and hit classes. Geant4. You can add your own.

One hit class can contain many. Each scorer accumulates one
guantities. A hit can be made for guantity. for an event.

each individual step, or accumulate
guantities.

Basically: one hits collection is made
PEer one detector.

G4MultiFunctionalDetector creates
many. collections (maps), i.e. one

collection| per one scorer.

Hits collection! is relatively compact. Keys of maps are redundant for
scorers of same volume.

I’ would suggest to :
» Use primitive scorers

» i you are not interested in recording each individual step but accumulating
some physics guantities for an event for a run, and

» i you do not have to have too many scorers.
> Otherwise, consider implementing your own sensitive detector.

Slide from SLAC Geant4 tutorial course in ‘06

Primitive scorers

Slide from SLAC Geant4 tutorial course in ‘06

list of provided primitive Scorers

» Concrete Primitive Scorers ((See Application Developers Guide 4.4.6)
» rack length
» G4PSiracklLength, G4PSPassagelracklength
» Deposited energy
» GAPSEnergybepsit, G4PSDeseDeposit

» Current/Elux

» G4PSFHlatSurfaceCurrent, G4PSSphereSurfaceCurrent, G4PSPassageCurrent,
G4PSFElatSurfaceklux, G4PSCellElux, G4PSPassageCellFlux

» Others

» GAPSMInKinEAtGeneration, GAPSNofSecondary, G4PSNofStep

SurfaceCurrent : SurfaceFlux :
Count Sum up 1/cos
number of (angle) of
injecting Injecting| particles
particles at defined surface

25}%22@.% / N
SN

CellFlux :
Sumiof L /V of
INjecting particles
in the geometﬁcél cell.

Slide from SLAC Geant4 tutorial course in ‘06

Keys off GATHitsMap

» All' provided primitive scorer classes use G4lHitsMap<G4double>.

» By default, the copy number is taken from the physical volume to which
G4MultiFunctionalDetector Is assigned.

» If the physical volume is placed only once, but its (grand-)mother volume is
replicated, use the second argument of the constructor of the primitive
scorer to indicate the level where the copy number should be taken.

e.d. G4PSCellFlux(G4Steing name, G4int depth=0)

Key should be taken =P Sce exampleNO7

from upper geometap conv No 0 Copy No 1 Copy No 2
hierarchy

Scorer A o—

Copy No
Scorer Be 0

» If your indexing scheme, isimore complicated (e.g. utilizing| copy humbers of
more than one hierarchies), you can override the virtual method Getindex()
provided for all the primitive scorers.

Slide from SLAC Geant4 tutorial course in ‘06

For example...

MyDetectorConstruction::Construct()
{ ... G4LogicalVolume* myCellLog = new G4LogicalVolume(...);
G4VPhysicalVolume* myCellPhys = new G4PVParametrised(...);

G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector
(“"myCellScorer”);

G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);
myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux
(“TotalSurfFlux™);

myScorer->Register(totalSurfFlux);
G4VPrimitiveSensitivity* totalDose = new G4PSDoseDeposit(* TotalDose”);
myScorer->Register(totalDose);

No need of implementing
sensitive detector !

Slide from SLAC Geant4 tutorial course in ‘06

Creating your own Scorer

> Thoughiwe provide moest commonly-used scorers, you may want to create your own.
» Iffyou believe your reguirement is quite. common, just let us know, so that we will add
d NEW SCOrer.
> G4VPrimitiveScorer is the abstract base class.
class G4VPrimitiveScorer
{
public:
G4VPrimitiveScorer (G4String name, G4int depth=0) ;
virtual ~G4VPrimitiveScorer() ;
protected:
virtual G4bool ProcessHits (G4Step*,
G4TouchableHistory*) = 0;
virtual G4int GetIndex (G4Step¥*) ;
public:
virtual void Initialize (G4HCofThisEvent¥*) ;
virtual void EndOfEvent (G4HCofThisEvent¥*) ;

virtual void clear() ;

};
» GetIndex() has already been introduced. Other four methods written in yellow will be

discussed at "Scoring 2" talk. Slide from SLAC Geant4 tutorial course in ‘06

Eilter class

Slide from SLAC Geant4 tutorial course in ‘06

GAVSDEilter

» G4VSDFilter can be attached to G4VSensitiveDetector and/or
G4VPrimitiveSensitivity to define which kinds of tracks are to be scored.

» E.g., surface flux of protons can be scored by G4PSFlatSurfaceFlux with a filter

that accepts protons only.

G4VSensitiveDetector

/ k G4VSDFilter

userSensitiveDetector G4MultiFunctionalDetector

G4VPrimitiveSensitivity 1

G4SDParticleFilter

G4PSDoseScorer LL userFilter

Slide from SLAC Geant4 tutorial course in ‘06

Llist of° previded filter' classes

G4SDChargedFilter, G4SDNeutralFilter

» Accept only charged/neutral tracks, respectively
G4SDKineticEnergyFilter

» Accepts tracks within the defined range of kinetic energy.
G4SDParticleFilter

» Accepts tracks of registered particle types
G4SDParticleWithEnergyFilter

» Accepts tracks of registered! particle types within the defined range of kinetic
energy.

GAVSDFilter
» Abstract base class which you can use to make your ewn filter
class G4VSDFilter
{
public:
G4VSDFilter (G4String name) ;
virtual ~G4VSDFilter () ;
public:
virtual G4bool Accept (const G4Step*) const = 0;

Slide from SLAC Geant4 tutorial course in ‘06

For example...

MyDetectorConstruction::Construct()

{ ... G4LogicalVolume* myCellLog = new G4LogicalVolume(...);

G4VPhysicalVolume* myCellPhys = new G4PVParametrised(...);
G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector(“myCellScorer”);
G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);
myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux(“TotalSurfFlux”);
myScorer->Register(totalSurfFlux);

G4VPrimitiveSensitivity* protonSufFlux = new G4PSFlatSurfaceFlux(*ProtonSurfFlux”);
G4VSDFilter* protonFilter = new G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->Register(protonSurfFlux);

Slide from SLAC Geant4 tutorial course in ‘06

Accumulating scores for'a run

Slide from SLAC Geant4 tutorial course in ‘06

A tip for scoring

» For'scoring purposes, you need to accumulate a physical guantity (e.g. energy.
deposition ofi a step) for entire run of many events. In such ajcase, dor NOI sum
up individual energy’ deposition; of each step directly to a variable for entire run.

» Compared to the total sum; for entire run, each energy deposition of single
stepi is too tiny. Roundingl error problem may: easily: happen.

» Jotal energy deposition of 1 million events of' 1 GeV. incident particle

ends up to 1 PeV (10 eV), while energy: deposition of each single step
is O(1 keV) or even smaller.

Create your own| Run class derived from G4Run, and implement RecordEvent
(const G4Event™) virtuall method. Here you can get all output of the event so
that you can accumulate the sum off an event to a variable for entire run.

» RecordEvent(const G4Event®) is automatically inveked: by G4ARunManager.

» Your run class object should be instantiated! in GenerateRun() method! of
your UserRunAction.

Slide from SLAC Geant4 tutorial course in ‘06

Customized run class

#include “G4Run.hh”
#include “G4Event.hh”
#include "G4 THitsMap.hh™
ClassiMyRun : public G4Run
{
public:
MyRun();
virtual ~MyRun();
virtual void RecordEvent(const GAEvent™);
private:
G4int nEvent;
G4int totalSurfiEluxID, protonSurfiEluxiD, totalDoselD;
G4 T HitsMap<G4double> totalSurfElux;
G4THitsMap<G4double> protonSurfiElux;
G4l HitsMap<G4double> totalDose;

G4THitsMap<G4double>* eventilotalSurfElux;
G4 THitsMap<G4double>* eventProtonSurfElux;

G4THitsMap<G4double>* eventiotalDose
public:
... dccess methods ...

Implement how you accumulate
event data

57

Slide from SLAC Geant4 tutorial course in ‘06

Customized run class

MyRun::MyRun() : nEvent(0)
{
G4SDManager™ SDMI = G4SDManager::GetSDMpointer();
totalSurfEluxID: = SDM->GetCollectionID("myCellScorer/TotalSurfFlux™);
protonSurfFluxID’ = SDM->GetCollectionID("myCellScorer/ProtonSurfFlux™);
totalDoselD: = SDM->GetCollectionID(*myCellScorer/TotalDose™);

J
ame of G4VPrimitiveSensitivity object
void MyRun::RecordEvent(const G4Event* evtg. Y o8

{
nEvent++;
G4HCofThisEvent* HCE = evt->GetHCof ThisEvent();
eventlotalSurfilux = (G4THitsMap<G4double>*)(HCE->GetHC(totalSurfFluxID));
eventProtonSurfFlux = (G4THitsMap<G4double>*)(HCE->GetHC(protonSurfEluxID));
eventlotalDose = (G4THitsMap<G4double>*)(HCE->GetHC(totalDose));
totalSurfiElux += *eventlotalSurfElux;

protonSurfFlux += *eventProtonSurfilux; No need of loops.
+= operator is provided !

name of G4MultiFunctionalDetector object

totalDose += *eventlotalDose;

Slide from SLAC Geant4 tutorial course in ‘06

RunAction with customized! run

G4Run™* MyRunAction::GenerateRun()
{ return (new: MyRun());
void MyRunAction::EndOfRunAction(const GARuUn® aRun)
{
MyRun* theRun = (MyRun™)aRun;
[/ ... analyze /[record / print-out your run summary
[/ MyRun ebject has everything you need ...

J

» As you have seen, to accumulate event data, you do NOI need
» Event / tracking / stepping action classes

» Alllyou need are your Run and RunAction classes.

> With newly introducing concrete sensitivity classes, you do NOI even need
» Sensitive detector implementation

—p REfEr t0 exampleNQ7

Slide from SLAC Geant4 tutorial course in ‘06

